INTERNATIONAL BACCALAUREATE

MARKSCHEME

May 1997

MATHEMATICS

Higher Level

Paper 1

1.
$$AB = \begin{pmatrix} 1 & p & q \\ 1 & 0 & r \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2+3p & p & q \\ 2 & 0 & r \\ 0 & 0 & 2 \end{pmatrix}$$
 (M1)(A1)

Hence AB = C implies

$$\begin{pmatrix} 2+3p & p & q \\ 2 & 0 & r \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} -1 & -1 & 10 \\ 2 & 0 & -6 \\ 0 & 0 & 2 \end{pmatrix}$$

So
$$2+3p=-1$$
, $p=-1$, $q=10$ and $r=-6$ (RI)
 $p=-1$, $q=10$, $r=-6$ (AI)

Answers:
$$p = -1, q = 10, r = -6$$
 [C4]

2. (a)
$$\vec{OP} = -i + 5j + 7k$$
, $\vec{OQ} = i + 2j + 3k$ (G1)

(b)
$$\vec{OP} \times \vec{OQ} = \begin{vmatrix} i & j & k \\ -1 & 5 & 7 \\ 1 & 2 & 3 \end{vmatrix} = i + 10j - 7k$$
 (C2)

(c) Area of the parallelogram is
$$|\overrightarrow{OP} \times \overrightarrow{OQ}|$$

= $|i| + 10j - 7k| = \sqrt{150} = 5\sqrt{6}$ (C1)

Answers: (a)
$$\overrightarrow{OP} = -i + 5j + 7k, \overrightarrow{OQ} = i + 2j + 3k$$

(b) $\overrightarrow{OP} \times \overrightarrow{OQ} = i + 10j - 7k$
(c) Area of the parallelogram $= \sqrt{150} = 5\sqrt{6}$ [C4]

Note: In (a) award (C1) only if both \overrightarrow{OP} and \overrightarrow{OQ} are correct, otherwise award (C0).

3.
$$z = -1 + 3i$$
, $w = 3 + i$

$$zw = (-1+3i)(3+i) = -6+8i$$
 (M1)(A1)

$$\frac{z}{w} = \frac{(-1+3i)(3-i)}{(3+i)(3-i)} = \frac{(-3+3)+(9+1)i}{10} = \frac{0+10i}{10} = 0+i=i$$
(M1)(A1)

Answers:
$$zw = -6 + 8i$$

$$\frac{z}{w} = 0 + i \text{ or } i$$
[C4]

4. Probability of drawing a black and a white ball is
$$= \frac{\binom{5}{1}\binom{7}{1}}{\binom{12}{2}} = \frac{(5)(7)}{66} = \frac{35}{66}$$
 (M2)(A2)

Answer:
$$\frac{35}{66}$$
 [C4]

Remark: Some candidates may solve the problem as follows:

Probability of choosing a white ball first and a black ball next is

$$\left(\frac{5}{12}\right)\left(\frac{7}{11}\right) = \frac{35}{132}$$
 (M1)(A1)

Probability of choosing a black ball first and next a white ball is

$$\left(\frac{7}{12}\right)\left(\frac{5}{11}\right) = \frac{35}{132}$$
 (M1)

Hence probability of choosing a black and a white ball in two draws is

$$\frac{35}{122} + \frac{35}{122} = \frac{35}{66} \tag{A1}$$

5. Area
$$=\int_0^k \sqrt{x} dx = \left[\frac{x^{3/2}}{3/2}\right]_0^k = \frac{2}{3}k^{3/2}$$
 (M2)(A2)

Answer: Area =
$$\frac{2}{3}k^{3/2}$$
 [C4]

6.
$$f'(x) = \ln x + \frac{x}{x} + e^{\sin x} \cos x + \frac{1}{1 + x^2}$$

$$= \ln x + 1 + e^{\sin x} \cos x + \frac{1}{1 + x^2}$$
(C1)(C1)(C1)

Answer:
$$f'(x) = 1 + \ln x + e^{\sin x} \cos x + \frac{1}{1 + x^2}$$
 [C4]

7.
$$\int (x^2 - 1)^3 x dx = \frac{1}{2} \int (x^2 - 1)^3 2x dx = \frac{(x^2 - 1)^4}{8} + c$$
 (M2)(A2)

Answer:
$$\frac{(x^2-1)^4}{8}+c$$
 [C4]

8. Probability of a student not graduating = 0.3
Probability of a student graduating =
$$1 - 0.3 = 0.7$$
Probability that exactly 4 out of 6 of the randomly selected students graduate is
$$\binom{6}{4}(0.7)^4(0.3)^2 \approx 0.324$$
(M1)(A2)

9.
$$3\sin^2\theta - 7\sin\theta + 5 = 3 - 3\sin^2\theta \quad (0^\circ \le \theta \le 90^\circ)$$

or:
$$6\sin^2 \theta - 7\sin \theta + 2 = 0$$

or: $(3\sin \theta - 2)(2\sin \theta - 1) = 0$
or: $\sin \theta = \frac{2}{3}$ or $\sin \theta = \frac{1}{2}$ (M1)(A1)

Hence,
$$\theta = \arcsin \frac{2}{3} \approx 41.8^{\circ}$$

or, $\theta = \arcsin \frac{1}{2} = 30^{\circ}$ (M1)(A1)

Answer:
$$\theta = 41.8^{\circ} \text{ or } 30^{\circ}$$
 [C4]

10.
$$z = 1 + 2i$$
 is a solution implies $z = 1 - 2i$ is also a solution. Hence $[z - (1 + 2i)][z - (1 - 2i)] = z^2 - 2z + 5$ is a factor of $z^2 - 3z^2 + 7z - 5 = 0$. (M1)(A1)

The other factor is
$$\frac{z^2 - 3z^2 + 7z - 5}{z^2 - 2z + 5} = z - 1$$
 (M1)

Hence the other two solutions are
$$z = 1 - 2i$$
 and $z = 1$. (A1)

Answers:
$$z = 1 - 2i, z = 1$$
 [C4]

11.
$$\overrightarrow{OP} = 3\mathbf{i} - \mathbf{j} \text{ and } \overrightarrow{OQ} = \lambda \mathbf{i} - (\lambda + 4)\mathbf{j}$$

$$\overrightarrow{OP} \cdot \overrightarrow{OQ} = 4\lambda + 4$$
(A1)(A1)

Since \overrightarrow{OP} is perpendicular to \overrightarrow{OQ} , $4\lambda + 4 = 0$ Hence $\lambda = -1$ (M1)(A1)

Answer:
$$\lambda = -1$$
 [C4]

12. Probability that a component is produced by machine
$$A = p(A) = \frac{2500}{4000} = \frac{5}{8}$$
.

Probability that a component is produced by machine $B = p(B) = \frac{1500}{4000} = \frac{3}{8}$.

Probability that a component is faulty is p(F).

(a)
$$p(F) = p(A)p(F|A) + p(B)p(F|B) = \frac{5}{8}(0.04) + \frac{3}{8}(0.05) = \frac{7}{160}$$
 (M1)(A1)
= 0.04375

(b)
$$p(A|F) = \frac{p(A)p(F|A)}{p(F)} = \frac{\left(\frac{5}{8}\right)(0.04)}{0.04375} = \frac{4}{7} \approx 0.571$$
 (M1)(A1)

13.
$$\int x^{2}e^{-2x}dx = -\frac{1}{2}e^{-2x}x^{2} + \frac{1}{2}\int e^{-2x}2xdx$$
$$= -\frac{1}{2}e^{-2x}x^{2} + \int e^{-2x}xdx \qquad (C1)(C1)$$
$$= -\frac{1}{2}e^{-2x}x^{2} - \frac{1}{2}e^{-2x}x + \frac{1}{2}\int e^{-2x}dx \qquad (C1)$$
$$= -\frac{1}{2}e^{-2x}\left(x^{2} + x + \frac{1}{2}\right) + c \qquad (C1)$$

Answer:
$$-\frac{1}{2}e^{-2x}\left(x^2+x+\frac{1}{2}\right)+c$$
 [C4]

14. We want to find L such that $p\left(z \ge \frac{0.70 - L}{0.12}\right) = 0.2$.

The closest probability to 0.8 from the table of standard normal probabilities is 0.7995 and the corresponding z value is 0.84. (R1)(A1)

Hence,
$$\frac{0.70 - L}{0.12} = 0.84$$

and
$$L = 0.70 - (0.84)(0.12) \approx 0.599$$
 (M1)(A1)

Answer:
$$L = 0.599$$
 [C4]

15. Let the kth term in the binomial expansion of $\left(\frac{9}{2}x^2 - \frac{1}{9x}\right)^9$ be independent of x.

Then $\binom{9}{k} \left(\frac{9}{2}x^2\right)^k \left(-\frac{1}{9x}\right)^{9-k}$ is independent of x.

Thus
$$(x^{2k})(x^{k-9}) = x^0$$
 or $3k - 9 = 0$ or $k = 3$. (M1)(A1)

Hence, the coefficient of the term independent of x is $\binom{9}{3} \left(\frac{9}{2}\right)^3 \left(-\frac{1}{9}\right)^6 = \frac{7}{486}$. (M1)(A1)

Answer:
$$\frac{7}{486}$$
 [C4]

16. Differentiate $xy^2 + x^2y = 2$, implicitly with respect to x.

Hence
$$y^2 + 2xyy' + 2xy + x^2y' = 0$$

or: $y' = -(2xy + y^2)/(2xy + x^2)$ (M1)

- (a) Thus, the gradient of the curve at (1, 1) is -1. (A1)
- (b) Slope of the line perpendicular to the centre at (1, 1) is 1 (C1) Equation of the line perpendicular to the curve at (1, 1) is y 1 = 1(x 1) or y = x (C1)

Answers: (a) Gradient =
$$-1$$
 [C2]
(b) Equation of the line is $y = x$ [C2]

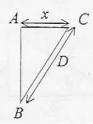
- 17. (a) Integrating factor is e^{tan x}. (CI)
 - (b) Multiplying the given equation by the integrating factor, we get, $y'e^{\tan x} + ye^{\tan x} \sec^2 x = e^{\tan x} \sec^2 x$

or:
$$\frac{d}{dx}(ye^{\tan x}) = e^{\tan x} \sec^2 x$$
or:
$$ye^{\tan x} = \int e^{\tan x} \sec^2 x dx = e^{\tan x} + k$$
or:
$$y = 1 + ke^{-\tan x}$$
(M1)(A1)

Since
$$y = 2$$
 when $x = 0$, we have
 $2 = 1 + ke^0$ or $k = 1$. (R1)

The solution over $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is $y = 1 + e^{-\tan x}$.

18. Let B be the radar station, A the position of the airplane when it was vertically above the radar station and C be the position of the airplane after an elapse of t hours.



Given $AB = 10\,000$ metres = 10 km. Let AC = x km. Distance, D, of the airplane from the radar station after t hours = $BC = \sqrt{10^2 + x^2}$.

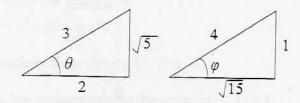
$$\frac{dD}{dt} = \frac{x}{\sqrt{100 + x^2}} \frac{dx}{dt} = \left(\frac{x}{\sqrt{100 + x^2}}\right) 800$$
(M1)(A1)

Hence, when x = 2 km,

$$\frac{dD}{dt} = \left(\frac{2}{\sqrt{104}}\right) 800 = \frac{800}{\sqrt{26}} \text{ km/hour}$$
 (M1)(A1)

Answer:
$$\frac{800}{\sqrt{26}}$$
 km / hour [C4]

19. Let $\theta = \arccos \frac{2}{3}$ and $\varphi = \arcsin \frac{1}{4}$. Then



$$\sin(\arccos\frac{2}{3} + \arcsin\frac{1}{4}) = \sin(\theta + \varphi) \tag{M1}$$

$$= \sin \theta \cos \varphi + \cos \theta \sin \varphi = \left(\frac{\sqrt{5}}{3}\right) \left(\frac{\sqrt{15}}{4}\right) + \left(\frac{1}{4}\right) \left(\frac{2}{3}\right)$$
(M1)(A1)

$$=\frac{\sqrt{75}+2}{12}=\frac{5\sqrt{3}+2}{12} \tag{A1}$$

Answer:
$$\frac{5\sqrt{3}+2}{12}$$
 [C4]

(b) Since
$$52 = 1 \pmod{3}$$
, $f(52) = f(1) = 1$ (M1)(A1)

(c)
$$f'(26\frac{1}{2}) = f'(24 + 2\frac{1}{2}) = f'(2\frac{1}{2}) = -2$$
 (C1)